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Abstract
The deficiency of macro (N, P, S, Ca, Mg and K) and micro (Zn, Cu, B, Mo, Cl, Mn and Fe) minerals has a major effect on 
plant development. The lack of some nutrient minerals especially of nitrogen, potassium, calcium, phosphorus and iron is 
a huge problem for agriculture and early warning and prevention of the problem will be very useful for agro-industry. Cur-
rently, the methods used to determine nutritional deficiency in plants are soil analysis, plant tissue analysis or combined 
methods between the two aforementioned ones; however, these methods are time-consuming and costly. This study proposes 
a new method for determining nutrient deficiency in plants based on the rapid fluorescence of chlorophyll a. In the process 
of this research bean plants are grown on a complete nutrient solution (control plants) compared with those grown on a 
nutrient medium, which lacks one of these elements—N, P, K, Ca or Fe. In this article, the mineral deficiency in nutrient 
solution is evaluated by the stress response of the plants estimated by leaves photosynthetic activity. The photosynthetic 
activity is estimated by analysis of the chlorophyll fluorescence using JIP test approach that reflects functional activity of 
Photosystems I and II and physiological state of the photosynthetic apparatus as a whole. Furthermore, the fluorescence 
transients recorded from plants grown in nutrient solution with deficiency of N, P, K, Ca or Fe, are used as input data in 
Artificial Neural Network (ANN). This ANN was trained to recognize deficiency of N, P, K, Ca or Fe in the bean plants. 
The ANN is presented as a potential tool for identifying/predicting nutrient deficiencies in bean plants, using records of the 
fast fluorescence of chlorophyll a.

Keywords  Plant nutrient deficiency · Chlorophyll fluorescence · OJIP induction curves · JIP parameters · Artificial neural 
network · Prompt chlorophyll fluorescence

Introduction

To complete their life cycle and physiological functions, 
plants need chemical elements such as N, P, K, Ca, Mg, S, 
Fe, Mn, Zn, Cu, Cl, B and Mo. The elements (N, P, K, Ca, 
Mg, S) are required in large quantities (> 1000 mg/kg dry 
matter) and are called macronutrients. On the other hand, Fe, 
Mn, Zn, Cu, Cl, B and Mo are required in extremely small 
amounts (< 100 mg/kg dry matter) and are called micronutri-
ents (Osman 2013). Soil pH levels also affect the absorption 
of nutrients by plants. All of these minerals are available for 
plants in the range of pH 5.5–6.5 (Lucas and Davis 1961).

This article will examine the ways in which the deficiency 
of N, P, K, Ca and Fe in Pharsalus vulgaris can be deter-
mined by an artificial intelligence algorithm.

Nitrogen is the most important mineral for plants and 
its deficiency is crucial for plant vitality. The nitrogen is 
involved in the building of the amino and nucleic acids, it 
is important for biochemistry of coenzymes, for the photo-
synthetic pigments and for the polyamines (Maathuis 2009). 
The chloroplast proteins contain almost 75% of the nitrogen 
that exists in the leaves of the plants and about 27% of them 
are utilized in Rubisco (Cetner et al. 2017). In the chloro-
plasts, the nitrogen is associated with the light harvesting 
apparatus, photosystem I (PSI), photosystem II (PSII), elec-
tron transport chain, peripheral proteins and ATF synthase.

Nitrogen deficiency leads to reduction of plant size, due 
to the breakdown Rubisco capacity for CO2 fixation which 
leads to a decrease in the photosynthesis rate and inhibits 
the plant growth (Wei et al. 2015). In plants with nitrogen 
starvation, also decrease in chlorophyll content is observed 
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(Duli et  al. 2003). Furthermore, PSII activity in plants 
with nitrogen deficiency is interrupted at each level. Sub-
sequently, this leads to a decrease in the electron transport 
rate through the electron transport chain in the thylakoid 
membrane (Cetner et al. 2017).

Phosphorus is another crucial microelement for plant 
growth. It is involved in the composition of ATP, DNA and 
RNA; in the phospholipids constituting the cell membranes; 
in the sugar–phosphate intermediates; and lastly, in photo-
synthesis and breathing. This element is included in almost 
all metabolic processes. It plays an important role in the 
assimilation of carbon and nitrogen, in energy processes and 
lipid metabolism.

Phosphorus deficiency in plants leads to limited growth 
and low shoot/root dry matter ratio. Also P deficiency affects 
the development of reproductive organs and decreases the 
number of flowers as well as the formation of fruits and 
seeds (Sarker and Karmoker 1970).

The deficiency of P affects the carbon metabolism in the 
plants, because orthophosphate (Pi) is a major regulator of 
this type of metabolic processes. Whenever the levels of 
phosphorus are low, they reduce the CO2 assimilation and 
this leads to a reduction of photosynthetic electron transport 
rate (Carstensen, et al. 2018).

Potassium (K+) is a very important macronutrient for 
plants and it is involved in plant development and overall 
productivity. The potassium ion is important for photosyn-
thesis, osmoregulation, enzyme activation, protein synthesis, 
and ion homeostasis. The early visual symptom of potassium 
deficiency is chlorosis, which then develops into necrosis. 
The potassium ions are not involved directly in photosyn-
thetic metabolism; however, K-deficiency strongly affects 
photosynthesis as a whole due to lack of potassium leading 
to a decrease in the ATP synthesis and reduction of the CO2 
assimilation (Hafsi et al. 2014). Additionally, K-deficiency 
leads to a reduction of the photosynthetic process as a result 
of the low chlorophyll content (Duli et al. 2001). In addition, 
potassium plays a crucial role in the resistance of plants to 
pests and diseases (Amtmann et al. 2008).

Calcium deficiency is associated with poor plant growth, 
leaf necrosis and deformation. Calcium is vital for the 
metabolism of plants and regulates the structure of plants. 
Calcium ion plays a crucial role in membrane structure 
and its functionality, especially for membrane permeabil-
ity (Hepler 2005). Ca ions are involved in the regulation of 
enzyme synthesis (protein kinases or phosphatases) in the 
synthesis of new cell walls, which demonstrates that Ca-
deficiency is be extremely harmful to plants. Calcium defi-
ciency disrupts plant photosynthesis because Ca is a part of 
Mn4CaO5 cluster.

Iron deficiency causes chlorosis due to the reduced 
amount of chlorophyll, and leaves without Fe are smaller 
than normal (Osman 2013). The Photosynthesis is a 

sensitive process for the lack of Iron. This element is 
important for chlorophyll synthesis and as it participates 
in Fe–S proteins, in the ferredoxin and in the cytochrome 
in the photosynthetic electron transport chain. Moreover, 
Fe is represented in the cytochrome b559, as non-heme Fe 
in the PS II acceptor side and in the stromal part of core 
proteins between quinones QA and QB (Yruela 2013).

Plants emit several kinds of light: prompt fluorescence 
(PF), delayed fluorescence (DF), thermoluminescence and 
phosphorescence. For the aims of this research are used 
prompt fluorescence signals emitted by plants and its sig-
nals were used as an input data in the Neural Network. 
The choice of fluorescence of chlorophyll a, is specifically 
due to the fact that the fluorescence signals are sensitive 
to the nutritional stress of the plants (Kalaji et al. 2012). 
The chlorophyll fluorescence is a rapid, non-destructive 
method for a diagnostic of the plant stress conditions. 
Overall, two methods are used for the measurement of the 
prompt chlorophyll fluorescence a PF signal produced fol-
lowing a pulse-amplitude-modulated excitation and a PF 
signal emitted during a strong continuous actinic excita-
tion (Kalaji et al. 2012). In the process of the experiments, 
the latter method was used to measure PF signals. The 
fluorescence rise during the first second of illumination 
from the initial (Fo) to the maximal (Fm) fluorescence 
value. The nomenclature of the kinetic induction curves of 
the fast (up to 1–2 s) Chl a fluorescence transient is OJIPS. 
The analysis of these curves is called “JIP test “, which 
is based on the theory of energy fluxes in biomembranes 
(Strasser et al. 2004). The different parameters from PF 
signals and the induction curves are developed which are 
linked with the different steps and phases of the PF tran-
sient and the redox states of PSII. This makes the OJIPS 
curves and the JIP parameters as possible tools to study the 
nutritional content of plants (Strasser et al. 2004). There 
are some articles that shows that there is a good correlation 
between fast Chl a fluorescence and nutrient deficiency in 
plants. Put differently, fluorescence of the chlorophyll a is 
a good indicator of the nutritional status of plants (Alek-
sandrov et al. 2014; Kalaji, et al. 2014; Cetner et al. 2017). 
Due to the difference in induction curves emitted by plants 
with different nutritional status, it is permissible to use 
the OJIPS curves and JIP parameters as Artificial Neural 
Network (ANN) input data. Artificial neural network is 
one of the most important tool in modern science and this 
paper provides evidence for the uses of ANN in recogni-
tion of nutrient deficiency of plants. In this study is used 
ANN with backpropagation of errors (Svozil et al. 1997).

The purpose of the study is to investigate how the kinetic 
induction curves and JIP test parameters are changed in 
nutrient deficiency in plants and to use these parameters and 
curves as input data for ANN to determine the nutritional 
status of the plants.
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Materials and methods

Plant material

Bean plants (Phaseolus vulgaris cv. Cheren Starozagorski) 
was grown in 1 dm3 dark glass pots filled with a modified 
Hoagland nutrient solution (see Tables 1, 2 and 3 for the 
components of solution). Solutions were supplied with oxy-
gen by electrical pumps and replaced every 2 days. The pH 
of the nutrient mediums was about 5.0 for all modified solu-
tions. The average temperature for day/night was 26/18 °C, 
respectively, relative humidity was 50–60%, and the pho-
toperiod for the day/night cycle was 16/8 h. The maximum 
photosynthetically active radiation was about 4000 μmol 
(photons) m−2 s−1. After a week of growth in full Hoagland 
solution, the plants were moved to stressed nutrient medi-
ums. 14 days after the stress application (21 days after 
emergence) prompt chlorophyll a fluorescence (PF) meas-
urements were done on 9 fully developed leaves for each 
treatment.  

Chlorophyll fluorescence measurement

Induction kinetics of PF were measured with a Multifunc-
tional Plant Efficiency Analyzer, MPEA (Hansatech Instru-
ment Ltd., King's Lynn, Norfolk, PE30 4NE, UK) (Strasser 
et al. 2010). Prior to taking measurements as part of the 

experiment, each plant was kept in a dark area at least for 
30 min. Measurements were made on the abaxial surface of 
fully developed leaves on the middle part of the chosen leaf. 
Measured signals were analyzed by M-PEA-data analyser 
version 5.4 software (this software is laboratory designed in 
the Dept. of Biophysics and Radiobiology, Sofia University 
by Petko Chernev, PhD).

JIP test parameters

These parameters are obtained from various characteristic 
points of photoinduced chlorophyll fluorescence transients 
and are a useful instrument for analysis of plant photosyn-
thetic apparatus (Strasser et al. 2004; Strasser et al. 2010). 
The parameters used in this paper are described in Table 4.

Statistical analysis

All of the experiment data were statistically analyzed and 
the non-parametric Kruskal–Wallis one-way analysis of vari-
ance by ranks was applied to the study.

Artificial neural network

The artificial neural networks (“ANN” hereafter) are com-
puter models based on ideas for multiple regression and clas-
sification analysis that consist of several elements operating 
in parallel. The functionality and capacity of the network 

Table 1   Nonmodified Hoagland solution

Compound Molecular weight Concentration of 
stock solution

Volume of stock solution per 
liter of final solution 

Element Final concentration of 
element

g mol−1 gL−1 ml mM ppm

Macronutrients
 KNO3 101.10 101.10 6.0 N 16 224

K 6 235
 Ca (NO3)2⋅4H2O 236.16 236.16 4.0 Ca 4 160
 NH4H2PO4 115.08 115.08 2.0 P 2 62
 MgSO4⋅7H2O 246.48 246.49 1.0 S 1 32

Mg 1 24

Compound Molecular weight Concentration of 
stock solution

Volume of stock solution per 
liter of final solution 

Element Final concentration of 
element

g mol−1 gL−1 ml μM ppm

Micronutrients
 KCl 74.55 1.864 2.0 Cl 50 1.77
 H3BO3 61.83 0.773 2.0 B 25 0.27
 MnSO4⋅H2O 169.01 0.169 2.0 Mn 2.0 0.11
 ZnSO4⋅7H2O 287.54 0.288 2.0 Zn 2.0 0.13
 CuSO4⋅5H2O 249.68 0.062 2.0 Cu 0.5 0.03
 NaFeDTPA(10% Fe) 468.20 30.0 0.3–1.0 Fe 16.1–53.7 1.00- 3.00
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depend on the links between the neurons that build it, and 
the way they are located. In order for an ANN to function 
properly, it must be trained for the work it is to perform. The 
topology of ANN is formed from nods (neurons) which are 
grouped by layers. The first layer is called the input layer. 
The last layer is called the output layer. In-between, there 
are other layers that are called the hidden layers or computa-
tional layers (Abiodun et al. 2018). Depending on the struc-
ture and way of learning, there are different types of ANNs: 
feed-forward ANN, recurrent ANN, Elman and Jordan ANN, 
long short-term memory, Bi-directional ANN (Bi-ANN), 
Self-Organizing Map (SOM), stochastic ANN. There exist 

three major types of learning: supervised learning, unsuper-
vised learning and reinforcement learning (Krenker 2011).

In this study, the feed-forward ANN with supervised 
learning is used. The supervised learning is a machine learn-
ing algorithm used for training of an ANN to recognize or 
classify data. A set of training data is used for this purpose. 
The training data consist of input and desirable output data. 
In order to complete the training of an ANN the input and 
output data have to be fit. A learning algorithm called back-
propagation of errors is used for the purposes of this study. 
This type of learning consists of two transmissions through 
the layers of an ANN a forward transmission and a backward 
transmission. In the forward transmission, an active signal 
is applied to the input layer and then the signal propagates 
through the hidden layers to the output layer. At the point 
when this signal reaches the output layer, it produces a signal 
in response to the input signal and then the output signal 
provides “feedback” to the input layer. The propagated out-
put signal changes the input layer as such that the next input 
signal produces an output signal with close properties to 
the desirable output signal. This process is repeated until it 
reaches the desired signal (Rumelhart et al. 1986).

The code for the ANN is written on Python (a coding 
software widely used for the purposes of experiments in AI). 
A free-forward neural network was created for this paper 
with a hyperbolic tangent sigmoid transfer function in the 
hidden layers and a linear transfer function in the output 
layer (Hanrahan 2017; Haykin 2004).

Table 2   Modified Hoagland 
solution

The composition of the various culture media in mM. The concentration of minerals was achieved by addi-
tion X cm3 of concentrated stock solution (1 mol per 1 dm3) of corresponding component per 1 dm3 of 
medium. Numbers in the brackets indicate the pH of each nutrient solution

Hoagland solution Full pH 5.05 (–Ca) 
pH 
4.89

(–K) pH 4.82 (–N) pH 4.87 (–P) pH 4.94 (–Fe) pH 5.12

Ca (NO3)·4H2O 4 – 4 – 4 4
KNO3 6 6 - – 6 6
MgSO4·7H2O 2 – 2 2 2 2
NH4H2PO4 2 2 2 – – 2
Mg (NO3)2·6H2O – 4 – – – –
MgCl2·6H2O – – – – – –
Na2SO4 – 2 – – – –
NaNO3 – – 6 – – –
CaCl2 – – – 4 – –
KCl – - – 2 – –
NaH2PO4 – – – 2 – –
NH4NO3 – – – – 1 -
1% Iron Citrate 1 1 1 1 1 -
Microelements
(solution A)

1 1 1 – 1

Microelements
(solution B)

– – - 1 – –

Table 3   Salts containing micronutrients (without iron) used in modi-
fied Hoagland solution

Salts containing micronutrients Quantity (g dm−3 H2O)

Solution A Solution B

H3BO3 2.85 2.85
MnSO4·4H2O 1.10 –
ZnSO4·7H2O 0.28 –
CuSO4·5H2O 0.10 –
(NH4)6Mo7O24·4H2O 0.02 -
NaCl 3.12 3.12
MnCl2·4H2O – 0.93
ZnCl2 – 0.13
CuCl2·2H2O – 0.07
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The input signals in the ANNs are PF induction curves 
and JIP test parameters recorded and calculated, respectively, 
from leguminous plants grown hydroponically in nutri-
ent mediums under various nutrient deficiencies described 
hereafter. The number of the input induction curves used is 
150 for each plant grown in deficiency solution and for the 
control plants. The hidden neurons are 8 and input param-
eters are 2 induction curves for control plants and induction 
curves for plants with deficiency of some nutrient elements. 
The ANNs are trained with 600, 800 and 1000 repeats of 
the learning algorithm. The ¾ of all data sets were used for 
the training of the ANN and ¼ of the data sets were used for 
tests of the ANN.

Results

Chlorophyll a fluorescence and JIP test

Prompt chlorophyll fluorescence is considered to be sensi-
tive indicator for nutrient deficiency in plants (Aleksan-
drov et al. 2014; Kalaji et al. 2014; Cetner et al. 2017). 
The PF is measured from all the leaves and the displayed 

OJIPS transient curves then plotted on a logarithmic time 
scale. The OJIPS curves in health plants have two points 
between O and P points. J is displayed about 2 ms and I is 
30 ms after the beginning of fluorescence emitted by the 
chlorophyll a. The OJ phase depends on light and contains 
information on antennae size and connectivity between 
the PSII reaction centers (Stirbet, et al. 2014). The rise of 
transient from J to P is called thermal phase and depends 
on the reduction of the rest of the electron transport chain 
(Schansker et al. 1706).

In this study, it is observed that the curves of induction 
kinetics for different deficits were changed.

Figure 1 shows the fluorescence curves measured in 
Phaseolus vulgaris L. (Cheren Starozagorski), grown as a 
water culture in Hoagland complete solution (control) or 
in modified Hoagland solution for nutrient deficiency. The 
induction curves of chlorophyll fluorescence are presented 
in a logarithmic scale of time. In all induction curves, the 
characteristic J and I phases are clearly observable.

On Table 5, the values of JIP test parameters for plants 
grown in deficiency solutions are presented. Only param-
eters with statistically significant differences in the values 
between control and experimental plants are discussed.

Table 4   Definition of terms and formulas for calculation of the JIP test parameters from the Chl a fluorescence transient OJIP emitted by dark-
adapted leaves

Fluorescence parameters Description

F0 Minimal fluorescence, when all PS II RCs are open (at t = 0)
FM Maximal fluorescence, when all PS II RCs are closed

VJ = FJ
−F

0

F
M
−F

0

Relative variable fluorescence at the J-step

φPo = 1 − F
0

F
M

Maximum quantum yield of primary photochemistry (at t = 0)

φEo = 

(

1 −
F
0

F
M

)

(

1 − V
J

) Quantum yield of electron transport (at t = 0)

φRo = 

(

1 −
F
0

F
M

)

(

1 − V
I

) Quantum yield for reduction of end electron acceptors at the PSI acceptor side (RE)

ψEo = 1 − V
J

Probability (at t = 0) that a trapped exciton moves an electron into the electron transport chain beyond  QA
−

δRo Efficiency/probability with which an electron from the intersystem electron carriers moves to reduce end electron 
acceptors at the PSI acceptor side (RE)

γRc = ChlRC
Chl

total

Probability that a PSlI Chl molecule ·functions as RC

kn is proportional to 1

F
M

 Non-photochemical de-excitation constant

PIABS =  �
RC

1−�
RC

.
�
Po

1−�
Po

.
�
Eo

1−�
Eo

Performance index (potential) for energy conservation from exciton to the reduction of intersystem electron acceptors

PItotal = PI
ABS

�
Ro

1−�
Ro

Performance index (potential) for energy conservation from exciton to the reduction of PSI end acceptors

ABS/RC = 1−�RC
�
RC

Absorption flux (of antenna Chls) per RC

M0 Approximated initial slope (in ms–1) of the fluorescence transient V = f(t)

TRo/RC = 
M

0

(

1

V
J

)

Trapping flux (leading to  QA reduction) per RC

ETo/RC Electron transport flux (further than  QA
–) per RC

REo/RC Electron flux reducing end electron acceptors at the PSI acceptor side, per RC

RC/CSo = φPoF0 

(

V
J

M
0

)

Density of RCs ( QA
− reducing PSII reaction centers)



	 Acta Physiologiae Plantarum           (2022) 44:29 

1 3

   29   Page 6 of 10

Artificial neural network

The JIP analyses made for plants grown in the absence of a 
nutrient element indicate that the ICs of the PF and the JIP 
test parameters are different for each missing element. Based 
on these differences, it is designed an ANN to identify the 
missing nutrient in plants. To construct an ANN, as input 
data, is used the induction curves measured in the Phaseo-
lus vulgaris leaf as well as some JIP test parameters. The 
plants were grown in modified Hoagland solutions at differ-
ent nutrient deficiency. In this case the deficits presented in 
the network were: (–Fe), (–K), (–N), (–P), (–Ca) and (Con) 
-the control plants grown in a complete nutrient medium. 
The 6-component output vector of the type [1, 0, 0, 0, 0, 0, 
0], and 1 in this vector matches the data for the first deficit 
delivered at the entrance of ANN. Once the data for the first 
deficit are submitted, the data for the second are given and 
the output vector in this case has the form [0, 1, 0, 0, 0, 0, 
0], etc. The network with Bayesian Regularization method 
was trained and for this purpose was used ¾ of the data. The 
training from 600 to1000 times was repeated. The first task 
was to measure the PF fluorescence signals of bean plants 
and then to use them as input network data. The second task 
was to check whether these signals can be used to detect 
nutrient deficiency in plants. The data obtained during the 
training of the network is presented in Table 6. By using all 

the induction curves (Fe–Fe, (–K), (–N), (–P), (–Ca) and 
Control Plants), optimal network operation for 600, 800 and 
1000 replicates are reached at 8 hidden neurons. Increasing 
the number of hidden neurons does not increase the accuracy 
of the network. On the other hand, increasing the repeatabil-
ity of the training (epochs) after 800 repetitions in practice 
does not increase the accuracy of the network and for this 
reason it is accepted that the optimal number of repetitions 
is 800.

Results presented in Table 7 are obtained when the net-
work is trained to detect only one nutrient deficiency. As an 
input data are used two data sets—the data for the deficit of 
one macroelement and the data for control plants.

Discussion

In this study, it is measured chlorophyll a fluorescence tran-
sient to analyze the changes in light phase of photosynthe-
sis in nutrient-deficient bean plants. The plants were grown 
hydroponically to determine possible effects of macronutri-
ents (N, P, K and Ca) and micronutrient (Fe) deficiency on 
the Electron Transport Chain in the chloroplasts. Nutrient 
deficiency induced changes in chlorophyll a fluorescence 
induction curves as well as in JIP parameters. Due to these 
changes in the fluorescence induction curves and in the 

Fig. 1   Induction curves of PF, measured in Phaseolus vulgaris leaf, control and grown in Ca, N, K, P and Fe nutrient deficiencies. Fluorescence 
was measured by illumination of the plant with red light with an intensity of 4000 μmol hv m−2 s−1
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JIP parameters, they could be used for nutrient deficiency 
recognition.

Nitrogen deficiency

The value of Fo for plants with nitrogen deficiency is 
higher than the value of Fo for control plants. The higher 
initial fluorescence value measured in nitrogen deficiency 
plant is proof of the lower efficiency of transmitting of 
the excitation energy from the Light Harvesting Complex 
(LHCII) to the reaction centers of PSII (Havaux et al. 

1991). On the other hand, plants subject to nitrogen defi-
ciency have a higher value for Fм compared to the control 
plants. The Vj values of the control plants are less than 
those of plants with nitrogen deficiency. This means that 
PSI oxidizes stronger the plastoquinone pool in plants that 
develop in the absence of nitrogen. The lower value of 
ψ(Eo) for nitrogen-deficient plants indicates that electron 
transport after primary quinone is limited. The lack of 
nitrogen in plants leads to decrease in transport of elec-
trons through the ETC, which is reflected by the param-
eter φ(Eo). The value of parameter γ(RC) for stressed 

Table 5   Calculated JIP parameters in relative units for N, P, K, Ca 
and Fe deficiency Phaseolus vulgaris plants, normalized to respective 
parameter values, calculated for the control plants.  The significance 

values of difference as compared to control samples based on Dun-
nett’s Method are presented

*Non-significant differences

JIP parameters VJ FO δ(R0) φ(P0) φ(E0) ψ(E0) γ(RC)

Control 1.00 6817 1.00 1.00 1.00 1.00 1.00
(–N) 1.23 ± 0.005 8939 0.69 ± 0.004 0.98 ± 0.08* 0.85 ± 0.005 0.86 ± 0.005 0.84 ± 0.005

JIP parameters ABS/RC TR0/RC FM RC/ABS PI (ABS) PI (total) ET0/RC RE0/RC

Control 1.00 1.00 36,071 1.00 1.00 1.00 1.00 1.00
(–N) 1.32 ± 0.003 1.36 ± 0.003 48,145 0.75 ± 0.005 0.53 ± 0.002 0.29 ± 0.003 1.16 ± 0.04 0.81 ± 0.005

JIP parameters VJ FO δ(R0) φ(P0) φ(E0) ψ(E0) γ(RC)

Control 1.00 6817 1.00 1.00 1.00 1.00 1.00
(–P) 1.06 ± 0.05 9771 0.87 ± 0.004 1.02 ± 0.08* 0.98 ± 0.08* 0.97 ± 0.07* 0.90 ± 0.05

JIP parameters ABS/RC TR0/RC FM RC/ABS PI (ABS) PI (total) ET0/RC RE0/RC

Control 1.00 1.00 36,071 1.00 1.00 1.00 1.00 1.00
(–P) 1.19 ± 0.04 1.17 ± 0.04 51,543 0.84 ± 0.006 0.82 ± 0.006 0.66 ± 0.005 1.13 ± 0.04 0.99 ± 0.09*

JIP parameters VJ FO δ(R0) φ(P0) φ(E0) ψ(E0) γ(RC)

Control 1.00 6445 1.00 1.00 1.00 1.00 1.00
(–K) 1.17 ± 0.005 6416 0.83 ± 0.005 0.99 ± 0.09* 0.90 ± 0.05 0.90 ± 0.05 0.93 ± 0.05

JIP parameters ABS/RC TR0/RC FM RC/ABS PI (ABS) PI (total) ET0/RC RE0/RC

Control 1.00 1.00 36,084 1.00 1.00 1.00 1.00 1.00
(–K) 1.13 ± 0.03 1.14 ± 0.03 35,336 0.88 ± 0.007 0.65 ± 0.005 0.52 ± 0.002 1.03 ± 0.07* 0.85 ± 0.005

JIP parameters VJ FO δ(R0) φ(P0) φ(E0) ψ(E0) γ(RC)

Control 1.00 6445 1.00 1.00 1.00 1.00 1.00
(–Ca) 1.57 ± 0.005 5158 0.93 ± 0.05 0.74 ± 0.005 0.58 ± 0.003 0.67 ± 0.005 1.15 ± 0.05

JIP parameters ABS/RC TR0/RC FM RC/ABS PI (ABS) PI (total) ET0/RC RE0/RC

Control 1.00 1.00 36,085 1.00 1.00 1.00 1.00 1.00
(–Ca) 0.81 ± 0.007 1.31 ± 0.007 20,836 1.40 ± 0.006 0.40 ± 0.005 0.36 ± 0.008 0.75 ± 0.007 0.71 ± 0.007

JIP parameters VJ FO δ(Ro) φ(P0) φ(E0) ψ(E0) γ(RC)

Control 1.00 6445 1.00 1.00 1.00 1.00 1.00
(–Fe) 0.75 ± 0.006 7554 1.42 ± 0.009 1.16 ± 0.002 0.69 ± 0.005 0.75 ± 0.008 0.68 ± 0.005

JIP parameters ABS/RC TR0/RC FM RC/ABS PI (ABS) PI (total) ET0/RC RE0/RC

Control 1.00 1.00 36,085 1.00 1.00 1.00 1.00 1.00
(–Fe) 0.76 ± 0.006 0.80 ± 0.006 29,394 0.73 ± 0.006 0.41 ± 0.008 0.30 ± 0.009 0.69 ± 0.005 0.55 ± 0.003
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plants is lower than the value of this parameter for control 
plants. This means that the relative amount of chlorophyll 
molecules acting as RCs in plants grown under nitrogen 
deficiency is less than in control plants. The fact that the 
value of REo/RC is lower in plants grown under nitro-
gen deficiency compared to control plants indicates that 
much less electrons manage to reduce the last acceptors 
of PSI. The two performance indices PI (ABS) and PI 
(total) have very low values for stressed plants compared 
to unstressed. This shows that, in general, the lack of 
nitrogen has a strong negative effect on the photosynthetic 
apparatus. The higher value of the TRo/RC parameter for 
nitrogen deficiency plants shows that they capture more 
energy in the RC than the control plants. The value of 
the N parameter for the plants with nitrogen deficiency is 
lower than the value of this parameter for control plants. 
Therefore, fewer electrons are required for the complete 
recovery of acceptors after QA.

Phosphorus deficiency

The values of minimal fluorescence signal Fo and maxi-
mum fluorescence signal Fм in plants with phosphorus 
deficiency are higher than the value of Fo and Fm in con-
trol plants. The parameters δ(Ro) and γ(RC) are lower 
values than the values of the control plants. The first of 
these parameters gives information about the ability of the 
intermediate carriers to reduce the last acceptors of PSI. 
A lower γ(RC) value indicates that phosphorus deficient 
plants have a relatively small number of RCs compared to 
plants grown under normal conditions. In the case of phos-
phorus deficiency, the value for N is lower than in the con-
trol plants. The values of ABS/RC and TRo/RC for plants 
with phosphorus deficiency are higher than in unstressed 
plants. The ETo/RC parameter, which gives information 
about the flow of electrons after QA is greater in plants 
with phosphorus deficiency than in unstressed ones. This 
is an indication that a greater number of electrons are 
able to pass ETC after the primary quinone acceptor in 
PSII. On the other hand, the REo/RC parameter is not sub-
stantially altered, indicating that approximately the same 
number of electrons in both stressed and unstressed plants 
reach to the final acceptors of PSI. This means that for 
stressed plants, the losses of energy are mainly observed 
at intermediate carriers in ETC. One reason for this may 
be the water–water cycle (Weng et al. 2008).

Table 6   Input and output data of ANN trained to detect nutritional 
deficiencies in Phaseolus vulgaris 

The number of trains of the network (epochs) varies from 600 to 
1000. The number of hidden neurons varies from 2 to 10 and the 
input parameters are 6, which corresponds to measurements of the 
fluorescence signals of PF for plants grown in environments with dif-
ferent nutrient deficiencies (5 variants) + signal from control plants

Input data and repeti-
tions

Input 
param-
eters

Hidden 
Neurons

Wrong answers (%)

Training Test Total

Phaseolus vulgaris
PF (600)

6 2 43.6 43.8 43.7

Phaseolus vulgaris
PF (800)

6 2 43.2 43.6 43.5

Phaseolus vulgaris
PF (1000)

6 2 43.3 43.6 43.4

Phaseolus vulgaris
PF (600)

6 4 25.7 35.8 28.2

Phaseolus vulgaris
PF (800)

6 4 25.5 33.9 27.6

Phaseolus vulgaris
PF (1000)

6 4 25.3 32.8 27.0

Phaseolus vulgaris
PF (600)

6 8 25.9 29.6 26.8

Phaseolus vulgaris PF 
(800)

6 8 25.2 28.4 26.0

Phaseolus vulgaris
PF (1000)

6 8 25.3 28.6 26.5

Phaseolus vulgaris
PF (600)

6 10 25.5 30.2 26.7

Phaseolus vulgaris
PF (800)

6 10 25.2 29.8 26.3

Phaseolus vulgaris
PF (1000)

6 10 24.9 29.6 26.2

Table 7   Input and output data of ANN trained to detect nutritional 
deficiencies in Phaseolus vulgaris 

For the input parameters, the data obtained by measuring the fluores-
cence signals of PF are used simultaneously. The number of network 
exercises (epochs) is 800 iterations. The number of hidden neurons is 
8 and the input parameters are 2, which corresponds to a signal meas-
ured from a plant grown in a nutrient mineral deficiency + signal from 
control plants

Input data and repetitions Input 
param-
eters

Hidden 
Neurons

Wrong answers (%)

Training Test Total

Phaseolus vulgaris
(800) (–Fe) controls

2 8 3.1 4.0 3.5

Phaseolus vulgaris
(800) (–K) controls

2 8 0.2 1.8 0.6

Phaseolus vulgaris
(800) (–N) controls

2 8 2.3 5.3 3.0

Phaseolus vulgaris
(800) (–P) controls

2 8 0 0 0

Phaseolus vulgaris
(800) (–Ca) controls

2 8 1.1 5.2 2.4

Phaseolus vulgaris
(800) ALL

6 8 51.6 52.9 51.9
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Potassium deficiency

The induction curves of control plants and those with K-defi-
ciency are distinguished slightly from each other, indicating 
that the lack of K does not significantly affect the photo-
synthetic apparatus. This may be due to partial replacement 
of missing potassium ions with sodium ions in processes 
related to photosynthesis. Significant differences exist only 
with two parameters: VJ and δ(Ro). The first parameter dem-
onstrates that in plants lacking potassium there are a rela-
tively greater number of closed reaction centers at the J level 
of induction curves compared to control plants. The lower 
values for the parameter δ(Ro) show that the probability of 
reduction of the last acceptor of PSI is lower for plants with 
potassium deficiency. The JIP parameters ABS/RC, TRo/RC, 
Mo, RC/ABS, PI (ABS), PI (total) and REo/RC are altered 
due to potassium deficiency. Low values for PI (ABS) and 
PI(total) indicate that lack of potassium leads to changes in 
ETC and lowering the photosynthetic activity of the plants.

Calcium deficiency

For plants growing in a calcium-free environment, fluores-
cence is much less intense than that of the control plants. 
This is evident from the large difference between the value 
of the parameter FV of the stressed and unstressed plants. 
Lack of calcium causes changes in almost all JIP param-
eters. The PI (ABS) and PI (total) parameters have very low 
values for stressed plants compared to unstressed ones. The 
JIP analysis shows that calcium deficiency has an extremely 
strong impact on the photosynthetic apparatus and affects 
almost all of its components.

Iron deficiency

The higher value for Fo indicates that the light harvesting 
complex of the stressed plants is less effective than the light 
harvesting complex of the control plants. For bean plants 
grown in iron deficient environments, the parameters φ(Po) 
and δ(Ro) have higher values than in the control plants. The 
first of the two parameters gives information that in the 
stressed plants the transfer of electrons from RC to QA is 
more likely. The second parameter indicates that the prob-
ability, with which electron reduces the last acceptors of 
PSI, is greater for plants grown in Iron free environments. 
φ(Eo) and ψ(Eo) provide information that the probability of 
transfer of electrons after the primary quinone acceptor is 
much lower for stressed plants. The reason for this is prob-
ably due to the lack of intermediate non-heme iron between 
QA and QB. The lack of iron in plants has a negative impact 
on the whole photosynthetic apparatus.

It is clear that deficiency of some nutrients lead to dif-
ferences in the JIP test parameters and the fluorescence 

induction curves in plants. This gave reason to use artifi-
cial neural network for time efficient and accurate recog-
nition of nutrient deficiency in bean plants. The network 
which used in the work was ANN with backpropagation 
of error.

The ¾ of all the data to train the network were used and 
we used Bayesian Regularization for optimisation. The 
network from 600 to 1000 times was trained.

As inputs the fluorescence signals of PF were used. The 
network with 600 repetitions was trained first, changing 
the number of input parameters (deficiency) and the num-
ber of hidden neurons. The number of induction curves 
was 648. The data obtained during the training of the 
network are presented in Table 6. Using all parameters 
(representing plants with 5 types of tested deficits: (–Fe), 
(–K), (–N), (–P), (–Ca) and control plants) optimal net-
work operation for 600, 800 and 1000 reps are reached 
with 8 hidden neurons. Increasing the number of hidden 
neurons does not increase the accuracy of the network. On 
the other hand, increasing repetition of training (epochs) 
after 800 iterations does not actually increase the accuracy 
of the network and therefore was accepted that the optimal 
number of iterations is 800.

The next task was to use as an input network data only 
two signals—one for the signals measured by the deficiency 
plants and other for the signals measured by the control 
plants. The results are presented in Table 7. From Tables 6 
and 7, it is evident that the trained network for only two 
parameters gives a much smaller error compared to network 
trained ones, to detect all deficiencies at once.

The network trained to detect Iron and Nitrogen defi-
ciency has the biggest training error. The network trained 
to detect Phosphorus deficiency does not produce any erro-
neous results. On the other hand, when submitted the total 
number of data on all analyzed options: control and defi-
cient, the error increased to 52%.

It could be suggested that the appropriate nutritional defi-
ciency recognition strategy is to train the network to recog-
nize each deficiency individually.

The record of OJIP transients in the experiments allowed 
to be quantify photosynthetic parameters that were signifi-
cant for the evaluation of the photosynthetic apparatus of the 
investigated plants subjected to nutrient deficiency stress.

It is evident from the results that the same photosynthetic 
parameters calculated for plants subject to a different nutri-
tional deficiency have different values. These results are 
important, as they show that some photosynthetic param-
eters are sensitive to nutrient deficiency and could be used 
as a fluorescence phenotype marker.

Applying the AI to OJIP transient data allows us to rec-
ognize which nutrients are missing in plants. This approach 
allows for the development of fast and strongly accurate 
methods for plants monitoring in vivo conditions.
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Conclusion

Deficiency of all analyzed elements changed the physiologi-
cal state of bean plants that was displayed in modifications 
of the chlorophyll fluorescence transients. The effects of the 
lack of these elements included the impairments in electron 
transport chain in both donor and acceptor sides of PSII and 
of PSI. The ANN with backpropagation was applied to rec-
ognize nutrient deficiency on the basis of chlorophyll fluo-
rescence data. The results suggest that the ANN approach for 
early recognition of nutrient deficiency based on chlorophyll 
fluorescence data is a very useful and powerful tool.
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